

Институт физико-технических проблем Севера им. В.П. Ларионова СО РАН ФГБУН ФИЦ «Якутский научный центр СО РАН»

Пучение и осадки полотна дороги на сильнольдистых грунтах

Авторы: д.ф.-м.н. П.П. Пермяков, Г.Г. Попов

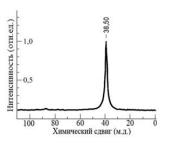
Результаты расчета приводятся в 2-х сценариях согласно глобальному климатическому изменению CMIPS: в первом без изменения среднегодовой температуры воздуха и равной минус 10 С и втором – при потеплении климата на 4 С.

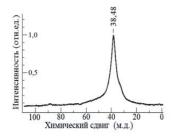
В первом сценарии наблюдается процесс пучения полотна, это связано со стабилизацией температурного режима и многогодичной миграцией влаги к фронту промерзания. При потеплении климата усиливается процесс протаивания грунта, увеличивается подвижность незамерзшей воды, которая сопровождается пучением и просадкой полотна железной дороги.

Для автомобильных и железных дорог изменение деформации связано с пучинными поднятиями и осадками земляного полотна на сильнольдистых грунтах основания при их циклическом промерзании-оттаивании.

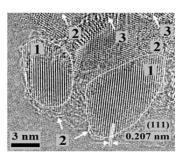
Публикации:

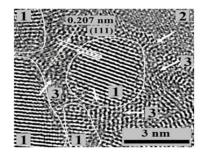
- 1. Пермяков П.П., Попов Г.Г., Жирков А.Ф., Варламов С.П., Винокурова Т.А., Кириллин А.Р. Применение мониторинговых геокриологических и метеорологических данных в прогнозе при эксплуатации инженерных сооружений в условиях СубАрктики.- Арктика территория стратегических научных исследований [Электронный ресурс]. сборник. Трудов II Арктического конгресса. Якутск, 20-22 сентября 2024 г. Якутск: Издательский дом СВФУ, 2024. 317-324 с.1 электрон. опт. Диск. ISBN 978-5-7513-3765-0
- 2. Пермяков П.П. Математическое моделирование негативных мерзлотных процессов. Новосибирск: CO PAH, 2023. 163 с. ISBN 978-5-6048598-7-2


Институт физико-технических проблем Севера им. В.П. Ларионова СО РАН ФГБУН ФИЦ «Якутский научный центр СО РАН»


Атомное строение и химическое состояние природного и синтетического наноалмаза до и после термической модификации

ПРИРОДНЫЙ НАНОАЛМАЗ


детонационный наноалмаз

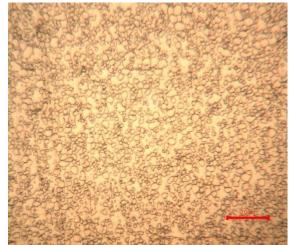

СПЕКТРЫ ЯМР ¹³С МАЅ ИСХОДНЫХ НАНОПОРОШКОВ АЛМАЗА

ПЕРВИЧНЫЕ ЧАСТИЦЫ ИСХОДНЫХ НАНОПОРОШКОВ АЛМАЗА

1, 2 – КРИСТАЛЛИЧЕСКИЕ ЯДРА
СТРЕЛКИ 2 – ЧАСТИЦЫ НЕАЛМАЗНОГО УГЛЕРОДА В SP²-СОСТОЯНИИ
СТРЕЛКИ 3 – ФРАГМЕНТЫ АЛМАЗОПОДОБНОГО УГЛЕРОДА В SP³-СОСТОЯНИИ
(просвечивающая электронная микроскопия)

Основная публикация:

Сивцева А.В., Шарин П.П., Протопопов Ф.Ф., Корякина В.В., Акимова М.П., Яковлева С.П., Иванов И.Е. Влияние термической обработки на качественный и количественный состав функциональных групп на поверхности наноалмазов // Материаловедение. 2024. № 6. С. 31-40. <u>DOI: 10.31044/1684-579X-2024-0-6-31-40.</u>


Авторы: П.П. Шарин, д.т.н. М.П. Лебедев, д.т.н., чл.-корр. РАН С.П. Яковлева, д.т.н.

Для решения актуальных задач управления химией поверхности порошков наноалмаза, современными высокоразрешающими методами исследованы структура и связанные формы углерода наноалмаза, полученного измельчением природного детонационным синтезом С последующей модифицирующей термообработкой. В первичных частицах порошков, помимо sp³углерода алмазного ядра, в составе оболочки выявлен неалмазный sp^2 -углерод и алмазный sp^3 -углерод с искаженной тетрагональной конфигурацией. В отличие от синтетического, в природном наноалмазе после термомодификации из оболочки практически удаляется неалмазный углерод снижается присутствие алмазоподобного углерода. Метод термомодификации перспективен для очистки и функционализации поверхности наноалмаза.

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Якутский научный центр СО РАН» обособленное подразделение Институт физикотехнических проблем Севера им. В.П. Ларионова Сибирского отделения РАН

Выплавка углеродистого сплава из железной руды рудопроявления «Мэнэ - Алдан» Республики Саха (Якутия)

Микроструктура выплавленного сплава при х1000.

Материал	Предел текучести σ_T , МПа	Предел прочности <u>о</u> _в , МПа	Удлинение δ, %	Сжатие Ψ, %		я вязкость , Дж/см² T=-40°С	Твердость, НВ
Сплав после отжига	334	615	14	25	37	10	212
Сталь У12 (ГОСТ 1435-99, [17]	325	590-690	28	45-55	27	-	217 (не более)

Авторы: к.ф.-м.н. Петров П.П., Степанова К.В., Данилов А.Д.

Выплавлен углеродистый сплав из железной руды рудопроявления «Мэнэ - Алдан» РС(Я), по химическому составу, механическим свойствам и структуре наиболее близкий к инструментальной нелегированной стали марки У12 (ГОСТ 1435-99). Микроструктура выплавленного сплава представляет собой зернистый перлит на фоне ферритной матрицы. Структура однородная, размер глобулярных включений цементита — 2,67±0,33 мкм. Согласно ГОСТ 8233-56, балл зерна перлита 8-9. По шкале для оценки микроструктуры инструментальной нелегированной стали (ГОСТ 1435-99), балл перлита составляет 5 баллов, что удовлетворяет требованиям этого нормативного документа. Данные, полученные в результате одноосного растяжения, показали, что выплавленный сплав относится к сплавам для отливок конструкционного класса. Предел прочности материала составляет 615 МПа (табл.). Твердость металла достигает 212 НВ, такое значение твердости характерно для качественных углеродистых сталей после нормализации.

Степень готовности разработки к практическому применению:

Представлена методика по выплавке углеродистого сплава с использованием железных руд осадочного происхождения из рудопроявления «Мэнэ-Алдан» Якутии.

Публикация:

Петров П.П., Степанова К.В., Данилов А.Д. Выплавка углеродистого сплава из железной руды рудопроявления «Мэнэ - Алдан» Республики Саха (Якутия). // Металлург. №9, 2024. С. 11-16. Doi:10.52351/00260827 2024 9 11 (импакт-фактор РИНЦ 0,356)

3